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ADAPTIVE REFINEMENT TREE - A NEW HIGH-RESOLUTION 
JV-BODY CODE FOR COSMOLOGICAL SIMULATIONS 

1.    Introduction 

iV-body techniques are used in cosmological simulations to follow the non-linear evolution of a system 
of particles, and to give theoretical predictions about the matter distribution which can be compared with 
observations. The traditional iV-body methods are Particle-Mesh (PM), Particle-Particle/Particle-Mesh 
(P3M), and TREE (Hockney k Eastwood 1981; Klypin k Shandarin 1983; Efstathiou et al. 1985; Bouchet 
k Hernquist 1988; and references therein). Although these algorithms proved to be useful, with currently 
available computers all of them fall short of the spatial or mass resolution desired in cosmological simulations. 
For example, one needs a resolution ~ 1 - 10 kpc to resolve a galaxy and a simulation cube of ~ 100 Mpc to 
sample appropriately the longest perturbation waves or to get sufficient statistics. The required dynamical 
range is thus ~ 104 - 105 which is much higher than current codes can allow. These limitations have 
motivated the development of new methods with better resolution and/or performance. 

Villumsen (1989) developed a code where the PM grid was complemented by finer cubic subgrids to 
increase the force resolution in regions of interest. The local potential was calculated as a sum of the 
potentials on the subgrids and on the PM grid. A similar approach was adopted by Jessop, Duncan k Chau 
(1994) in their particle-multiple-mesh code. However, instead of summing the potentials from subgrids, the 
potential on each level was obtained independently by solving the boundary problem. Boundary values of 
the potential were interpolated from the coarser parent grid. Couchman (1991) used cubic refinement grids 
to improve the performance of the P3M algorithm. Here, the resolution was retained at the level of the 
P3M code while the computational speed was considerably increased. In the Lagrangian approach (Gnedin 
1995; Pen 1995) the computational mesh is not static but moves with the matter so that the resolution 
increases (smaller mesh cells) in the high density regions and decreases elsewhere. Although potentially 
powerful, this approach has its caveats and drawbacks (Gnedin k Bertschinger 1996). The mesh distortions, 
for example, may introduce severe force anisotropies. A different approach was adopted by Xu (1995), who 
developed the TPM code - a hybrid of the PM and TREE algorithms. The gravitational forces in the TPM 
are calculated via a PM scheme on the grid and via multipole expansions (TREE algorithm) in the regions 
where higher force resolution is desired. The forces on the particles in low-density regions are calculated by 
the PM scheme, while forces on the particles in high-density regions are sum of external large-scale PM force 
and internal short-scale force from the neighboring particles. Although this code may not be faster than a 
pure TREE code, it is effectively parallel because particles in different regions can be evolved independently. 
An adaptive multigrid code for cosmological simulations was recently presented by Suisalu k Saar (1995). 
In this code, finer rectangular subgrids are adaptively introduced in regions where the density exceeds a 
specified threshold. For each subgrid the potential is calculated using boundary conditions interpolated from 
the coarser grid. The solution on the finer grid is used to improve the solution on the coarser grid. Another 
variant of an adaptive particle-multiple-mesh code for cosmological simulations was recently presented by 
Gelato, Chernoff, k Wasserman (1996). This code can handle isolated boundary conditions which makes it 
applicable to non-cosmological problems. 

All of the above multigrid methods use rectangular subgrids to increase force resolution. For simulations 
where there are only a few small regions of interest (e.g., a few galaxies or clusters of galaxies) the rectangular 
refinements may be a good choice because these regions can be easily covered by rectangular subgrids. It is, 
however, well-known that the geometry of structures in realistic cosmological models is usually a complicated 
network of sheets, filaments, and clumps which are difficult to cover efficiently with rectangular grids. 

In this paper we present a new Adaptive Refinement Tree (ART) high-resolution JV-body code. This 
code was developed to improve the spatial resolution of particle-mesh code by about two orders of magnitude 

Manuscript approved January 17, 1997 



without loss in mass resolution and computational speed. In our scheme, the computational volume is covered 
by a cubic rectangular grid which defines the minimum resolution. On this grid, the Poisson equation is solved 
with a traditional Fast Fourier Transform (FFT) technique using periodic boundary conditions. The finer 
meshes1 are built as collections of cubic, non-overlapping cells of various sizes organized in octal threaded 
trees in regions where the density exceeds a predefined threshold. Any mesh can be subject to further 
refinements; the local refinement process stops when density criterion is satisfied. Once constructed, the 
mesh is not destroyed at every time step but promptly adjusted to the evolving particle distribution. To 
solve the Poisson equation on these refinement meshes, we use a relaxation method with boundary conditions 
and initial solution guess interpolated from the previous coarser mesh. Below we present the method (Section 
2), describe the code (Section 3), and discuss the tests (Section 4). We then compare the code with other 
algorithms (Section 4), and finally apply it to a real cosmological problem (Section 5). 

2.    Methodology 

2.1.    Adaptive mesh refinement 

Adaptive mesh refinement (AMR) techniques for solving partial differential equations (PDEs) have 
numerous applications in different fields of physics, astrophysics, and engineering where large dynamic range 
is important. There are two major approaches in application of these techniques. In the first approach 
(e.g., Berger & Öliger 1984; Berger 1986; Berger & Colella 1989), the computational volume is divided in 
cubic elements (cells), while in the second (e.g., Löhner & Baum 1991) the cells can have an arbitrary shape. 
Collections of cells are used as computational meshes on which the PDEs are discretized. We will call meshes 
composed of cubic cells regular, calling meshes irregular otherwise. The integration of PDEs is simpler on 
regular meshes but dealing with complicated boundaries may be a difficult problem. With irregular meshes 
one can handle complicated boundaries much more easily. The price, however, is more elaborate algorithms, 
data structures, and associated CPU and memory overhead. A particular choice of the mesh structure is 
a tradeoff between these considerations. In astrophysics there are no complicated boundaries, and a cubic 
computational volume is usually used to model a system. In this case, there is no need in irregular meshes 
and it is preferable to use meshes made of cubic cells. 

The regular meshes themselves can be organized in different ways. The usual practice is to use regular 
meshes of cubic or rectangular shape (e.g., Berger & Colella 1989) organized in arrays (grids). This allows 
one to simplify data structures and to use standard PDE solvers. These arrays can be organized in a tree 
(Berger 1986) to form a multigrid hierarchy. The main disadvantage of the grids is that one cannot cover 
regions of complicated shape in an efficient way. Moreover, the arrays are unflexible data structure, and 
the whole refinement hierarchy should be periodically rebuilt, not adjusted, when dealing with unsteady 
solutions. 

In our approach, we use regular meshes but they are handled in a completely different way. Cells are 
treated as individual units which are organized in refinement trees (see Section 3.2). Each tree has a root 
- a cell belonging to a base cubic grid which covers the entire computational volume. If the root is refined 
(split) - it has 8 children (smaller non-overlapping cubic cells residing in its volume) which in their turn can 
be refined, and so on. Cells of a given refinement level are organized in linked lists and form a refinement 

*We will use word grid to refer to the cubic or rectangular configurations, reserving the word mesh for configurations of 
arbitrary shape. 



mesh. The tree data structures make mesh storage and access in memory logical and simple, while linked 
lists allow for efficient mesh structure traversals. In the current version of the code we make use of octal 
threaded trees (Khokhlov 1997) and doubly linked lists (e.g., Knuth 1968; Aho, Hopcroft, & Ulman 1983; 
Corner, Leiserson, & Rivest 1994). The fact that cells are treated as independent units rather than element 
of a grid allows us to build a very flexible mesh hierarchy which can be easily modified. The details of the 
mesh generation and modification in our code are described in Section 3. 

2.2.    Multilevel relaxation method 

The multigrid techniques of solving partial differential equations (Brandt 1977) are very successful in 
reducing the computational and storage requirements for solving many types of PDEs (Wesseling 1992, Press 
et al. 1992). There are two kinds of multigrid algorithms. The first, sometimes called multigrid method, 
is used to speed up convergence of relaxation method. In this method, the source term is defined only on 
the base finest grid - all the other coarser grids are used as a workspace. In the second algorithm, called 
full multigrid, the source term is defined on all grids, and the method obtains successive solutions on finer 
and finer grids. The latter method is useful when dealing with grids created in adaptive refinement process. 
The full multigrid scheme in its turn can be used differently depending on how the solutions on different 
levels influence each other. In the one-way interface scheme, the solution from a coarser grid is used to get 
a first guess solution on the finer grid, and often to get boundary values as well. However, the solution on 
the coarser grid is not influenced by the solution on the finer grid (e.g., Jessop, Duncan, k Chau 1994). In 
the two-way interface scheme, the coarser grid solution is used to correct the solution on the finer grids and 
vice-versa. The choice of a particular scheme is usually determined empirically, and is problem dependent. 
The two-way interface scheme is more difficult to implement in the case of periodic boundary conditions 

(Suisalu & Saar 1996). 

In our approach, each refinement mesh is composed of cells of the same refinement level but these 
meshes are completely different from grids. The techniques are thus multilevel rather than multigrid. We 
use an analog of full multigrid algorithm with the one-way interface between the meshes. We use a regular 
cubic grid covering the whole computational volume as the zeroth, coarsest level. At this level, the Poisson 
equation is solved using a standard FFT method with periodic boundary conditions. This solution is then 
interpolated on to the first level finer mesh to get the boundary values and first solution guess. Once the 
boundary problem is defined, we use a relaxation method (e.g., Press et al. 1992) to solve the Poisson 
equation on this mesh. As we start from an initial guess which is already close to the final solution, the 
iterative relaxation procedure converges fast. After we get the solution on the first refinement level, the same 
procedure (obtaining boundary values and initial guess by interpolation from the previous coarser level) is 
repeated for the next level, and so forth. At the end of this process we have the solution (potential) for all 
cells. The description of the code is given in the next section. 

3.    Description of the code 

3.1.    Code structure 

The structure of the code can be outlined as follows. First of all, we set up the initial positions and 
velocities of the particles using the Zel'dovich approximation as described by Klypin & Shandarin (1983). 
Once the initial conditions are set we construct the regular cubic grid covering the whole computational 



volume and then proceed to check if additional refinement levels are required according to the current 
density threshold. At this point the code enters the main computational loop which includes: 

• density assignment on all existing meshes; 

• gravitational solver; 

• routine updating particle positions and velocities; 

• modifications to the mesh hierarchy. 

The mesh modifications (refinement and derefinement) are based on the density distribution2. The modifi- 
cations are made at the end of the computational cycle. At this point the density distribution is available 
(it was calculated for the gravitational solver). 

Below we will describe each of these major functional blocks in detail. We will also discuss memory 
requirements of the code, timing, and energy conservation. 

3.2.    Mesh generator. 

The adaptive mesh refinement block of the code generates new and modifies existing meshes. The 
refinement hierarchy in our implementation is based on the regular cubic grid which covers the entire com- 
putational volume. With the refinement block turned off, the density assignment and gravity solver on this 
grid are similar to those in the PM code of Kates, Kotok, & Klypin (1991). 

The data structures that we use to organize the mesh cells are very similar to those implemented in the 
hydrodynamical Eulerian Tree Refinement code3 (Khokhlov 1997). All mesh cells are organized in refinement 
trees. A cell can be a parent of eight children - smaller cubic cells of equal volume residing in it. Each child 
may be in its turn split and have children. Each tree has a root - a zero level cell - which may be the only 
cell in this tree if it is unsplit. The tree ends with unsplit cells, which we call leaves. This structure is called 
an octal rooted tree - the construct which is used in TREE codes. There is, however, an important difference. 
We use fully threaded trees, that is trees which are connected with each other on all levels4. Note, that we can 
consider all cells as belonging to a single threaded tree with a root being the entire computational domain 
and the base grid being one of the tree levels. The tree structure is supported through a set of pointers. 
Each cell has a pointer to its parent and a pointer to its first child. In addition, cells has pointers to the 
six adjacent cells (these make the tree fully threaded) so that information about cell's neighbors is easily 
accessible (see Fig.l). Overall, the following information is provided for each cell i belonging to a tree: 

• Level(i) - level of the cell in the tree; 

• Parent(i) - pointer to the parent cell; 

2The density criterion in our case is a natural choice because we aim to resolve high density regions. We could use, however, 
any other appropriate criterion, e.g. local potential gradient, force accuracy etc. 

3There are, however, some important modifications which were required by specifics of the cosmological simulations. 

4 In simple threaded trees only leaves are connected. 



• Child(i) - pointer to the cell's first child or nil if the cell is a leaf; 

• Nb(i,j) - pointers to the neighbors (j = 1 —► 6); 

• Pos(i,j) - position in space (j = 1 —► 3); 

• Var(i, n) - storage for associated physical variables (in our case n = 2, as we keep both density and 
potential). 

The above set of pointers is sufficient to support the tree structure and to change it dynamically with 
minimum cost. In addition, the cells on each level of the mesh hierarchy are organized in doubly linked 
lists5 (e.g., Knuth 1968) so that a sweep through a given level (the operation used extensively in multigrid 
relaxations described below) can be done with minimum CPU time. The cells belonging to the base regular 
grid (level zero), while part of the same data structure, are created only at the very beginning of a simulation 
and are never destroyed. It is therefore unnecessary to keep information about a cell's position or pointers 
to its neighbors because they can be easily computed. The number of pointers can be considerably reduced 
(by as much as a factor of 2) because some of them can be shared by siblings (the eight cells which have the 
same parent). 

An elementary refinement process creates 8 new cubic cells of equal volume (children) inside a parent 
cell. When the parent is refined, we check if all six neighbors are of the same level as the parent. If 
there are neighbors of smaller level (coarser) than the parent, we split them. If a neighbor in its turn has 
coarser neighbors, we split the neighbor's neighbors, and so forth. We thus build a refinement structure 
which obeys a rule allowing no neighbor cells with level difference greater than 1. Examples of allowed and 
prohibited configurations are shown in Fig.2. Although this is the only rule in the whole refinement process, 
it determines the global structure of the resulting refinement hierarchy assuring that on a level's boundaries 
there are no sharp resolution gradients. On the next refinement pass each of the newly born children is 
checked against the density criterion and can be in its turn subdivided into 8 children if further splitting is 
needed. The process stops when either the density criterion is satisfied everywhere or the maximum allowed 
refinement level is reached. 

The refinement process proceeds level by level starting from the base grid. On any level of the mesh 
hierarchy the process can be split into two major parts. First, we mark up6 all the cells which need to be 
split creating a refinement map. However, the map constructed this way tends to be "noisy". We smooth 
it by marking additional cells so that any cell which was marked originally is surrounded by a buffer of 
at least two other marked cells. We construct this buffer using an algorithm which includes several passes 
through a level, each one marking additional cells. During the first pass the neighbors of cells marked in the 
refinement map are marked for splitting also. After that, two passes are made in which we mark for splitting 
only those cells which have at least two neighbors already marked for refinement (note, that we mean cells 
marked during all previous (not the current) passes). These three passes create a one-cell cubic buffer around 
each of the cells marked in the original refinement map. Each additional set of three passes similar to those 
described above will build one more cubic layer around every originally marked cell. Therefore, to build a 
two-cell buffer we make six passes. When the map is completed, it is used to make the actual splitting. 

sThe difference between a doubly linked list and the usual linked list (used, for example, in the P3M codes) is that in the 
former we keep not only a pointer to the next element but also a pointer to the previous element in the list. This allows us to 
insert and delete list entries without rebuilding the whole list. 

6 A cell is marked for splitting when the local density exceeds a predefined level-dependent threshold. 



The refinement procedure described above can be used either to construct the mesh hierarchy from 
scratch or to modify the existing meshes. However, in the course of a simulation the structure is neither 
constructed nor destroyed. Instead, on every computational cycle we modify existing meshes to account for 
the changes in particle distribution. Therefore, we need to make not only refinements but also derefinements 
(in the places where it is no longer necessary to keep resolution at the current level) which is done in the 
same manner by constructing a derefinement map - that is, map of cells marked for joining. If the joining 
violates the above mentioned neighbor rule nothing is done and the cell is kept split. Therefore, the code 
modifies the existing structure dynamically keeping the refinements in accord with the ever changing density 
field. The modification of the hierarchy requires much less CPU time than rebuilding it because only a small 
number of cells needs to be modified at any given time step. Fig.3 shows an example of the refinement mesh 
hierarchy built in one of the ACDM cosmological simulations described in Section 4.4 

3.3.    Particles within the mesh hierarchy and density assignment 

Particle coordinates are not sufficient to specify the particle-mesh connection because cells of different 
levels can share the same volumes. We need to know, however, which particles belong to a given cell. This 
is done by arranging particles in doubly linked lists so that every cell "knows" its head linked list particle 
(the head is nil if the cell is empty) and thus all the other particles in this linked list. If a particle moves 
from cell to cell, it is deleted from the linked list of the cell it leaves and is added to the new cell's linked 
list. Only leaves are allowed to own particles. Once a cell is split, all its particles are divided among its 
children. However, we solve the Poisson equation on every refinement level so that the density is needed in 
every cell regardless of whether or not it is a leaf. On each level, starting from the finest and up to the level 
zero, the density is assigned using the standard Cloud-In-Cell (CIC) technique (Hockney k Eastwood 1981). 
Because particles belong only to the finest cells enclosing them, when we go from level to level the particles 
are passed from children to their parents. This is done only for the density assignment and the linked list is 
not changed. The particles, therefore, contribute to the density on any level they are physically located on. 

3.4.    Poisson solver 

The fact that level zero of the mesh hierarchy is a cubic regular grid of fixed resolution allows us to 
use the FFT method to solve the Poisson equation on this grid (Hockney & Eastwood 1981). The FFT 
technique naturally supports periodic boundary conditions which is important for cosmological simulations. 

The Poisson equation on the refinement meshes is defined as a Dirichlet boundary problem where 
boundary values are obtained by interpolating the potential from the parent grid. In our algorithm, the 
boundaries of the refinement meshes can have an arbitrary shape which narrows the range of PDE solvers 
that one can use. To solve the Poisson equation on these meshes, we have chosen the relaxation method 
(Hockney & Eastwood 1981; Press et al. 1992). It is relatively fast and efficient in dealing with complicated 
boundaries. In this method the Poisson equation 

VV = P (1) 

is rewritten in the form of a diffusion equation, 

TZ^t-P' (2) 



or, in finite difference form: 

VnJ=l / 

where the summation is performed over a cell's neighbors. Here, A is the actual spatial resolution of the 
solution (potential), while Ar is a fictitious time step (it is not related to the actual time integration of 
the JV-body system). This finite difference method is stable when Ar < A2/6 (Press et al. 1992). If we 
choose the maximum allowed time step Ar = A2/6, the above equation can be rewritten in the form of the 

following iteration formula: 

^ = K^^-6^)-T^- (4) 
\nh=l / 

The relaxation iteration is thus averaging the potential of a cell's six neighbors and subtracting the contri- 
bution from the source term. Cells in the boundary layer will have some neighbors belonging to the coarser 
level. In this case, we need to interpolate to get the potential at the location of the expected neighbor. It 
is desirable that the interpolation maintain continuity and isotropy of the force (see discussion in Jessop et 
al. 1994). We have found that linear interpolation perpendicular to the boundary which incorporates both 
coarser and finer cell potentials is satisfactory; we get the interpolated value of the potential on the boundary 

of level / as: 
<j>int = Wi<f>I + (I - m)<l>i-i- (5) 

Here W{ is a weight, and <j>i and <j>i-i are the potentials of a boundary cell of level / and of its (/ — l)-level 
neighbor. We have found the optimal value of W{ to be 0.2 by minimizing the force discontinuity for particles 
moving through mesh boundaries. The iterative procedure described above is then repeated until the desired 
level of convergence is achieved. We can considerably speed-up the convergence of the relaxation procedure 
by using an initial guess for the solution which is already close to the final solution. Such an initial guess 
can be obtained by interpolating the potential from the previous coarser mesh, where the Poisson equation 
was already solved. By doing so, we need only 2-3 iterations to get the potential with an accuracy of a 
couple per cent. Nevertheless, a higher accuracy is needed because the potential is then differentiated to get 
the accelerations and the errors in accelerations are thus larger than errors in the potential. Therefore, we 
would need to make more iterations to reach the same ~ 1 - 2% accuracy level. The number of required 
iterations, however, can be considerably reduced by using the so-called Successive Overrelaxation (SOR) 
technique (Hockney & Eastwood 1981; Press et al. 1992). In this technique the solution in a given cell is 
computed as a weighted average, 

^+1=w^+1 + (l-w)0", (6) 

where <f>n+1 is the solution obtained via the iteration equation (4), <j>n is the solution from previous iteration 
step, and w is the overrelaxation parameter. The parameter u can be adjusted to minimize the number of 
iterations required to achieve a certain accuracy level. Of course, there is no point in using more iterations 
than is needed to make the iteration error smaller than truncation error. The latter can be estimated by 
making the number of iterations very large so that the iteration error is negligible. 

The ultimate goal of any TV-body algorithm is to get an accurate approximation to the pairwise inter- 
particle forces. Therefore, we use the force accuracy (see Section 4) to determine the required number of 
iterations. We do this by adjusting the overrelaxation parameter u to minimize the number of iterations 
while keeping the force accuracy at the level of truncation errors. We have found empirically that only 10 
relaxation iterations is needed if w = 1.25. 



3.5.    Particle dynamics 

To integrate the trajectories of the dark matter particles we use the Newtonian equations of motion 
in an expanding cosmological framework (e.g., Peebles 1980). These equations can be expressed in terms 
of comoving coordinates x related to the proper coordinates as r = a(f)x, where a(t) = (1 + z)~l is the 
expansion factor: 

- = -V.rf,    Tt = i, (7) 

where p is the momentum of a particle and Vx<f> is given by the Poisson equation relating the potential <f> to 
deviations of density from the background: 

V2
x<t> = 4KGa2(p-p). (8) 

The above equations are integrated numerically using dimensionless variables 

x = zox, t = t/HQ, <f> = £(*o#o)2, P = P(sotfo), p = pj?l~-, (9) 
OTTO a" 

where x0 is the length of a zero level mesh cell and H0 is the Hubble constant. We also use the expansion 
factor a instead of the time t so that equations (7)-(8) can be rewritten as: 

^ =  -/(oJ*InA,a)v& 

■£   =    f(nM,SlA,a)^, (10) 

T72T 3QM /~      ,v 

Here UM is the present day (z = 0) contribution of matter to the total density of the universe and fiA is the 
corresponding contribution of the vacuum energy (measured by the cosmological constant). The function / 
is specific to a given cosmological model. The general form of this function, valid for open, flat, and closed 
cosmologies, is (e.g. Carrol et al. 1992): 

v/l + fiM(l/a-l) + nA(a2-l) K   } 

We adopt a standard second-order leap-frog integration scheme of advancing particles to the next time 
step. For a step n, corresponding to time step an = a,mt + nAa, the momenta and positions of particles are 
updated as follows: 

p„+i    =   p„_i -/(fiA/,nA,a„) V^„ Aa, 

(12) 

x„+i    =   x„ + /(fiM,ßA,a„+i) -j-2- Aa. 

Here indices n, n + 1, and n ± | refer to quantities evaluated at an, an+i, and a„ ± Ao/2 respectively. 
Although multiple time stepping is probably very efficient in terms of CPU time, in the current version of 
the code we use a constant time step for all particles. We plan to implement individual time steps for different 
levels in the future. Particle coordinates and velocities are updated using their accelerations obtained via 
numerical differentiation of the potential and the consequent interpolation to the particle location using 



the CIC method (Hockney k Eastwood 1981). There are, however, some complications because particles 
can move through the level boundaries. The resolution gradients, for example, may induce unwanted force 
fluctuations and anisotropies (Jessop et al. 1994; Anninos, Norman, k Clarke 1994). In addition, momentum 
conservation, achieved by exact cancellation of numerical terms in the CIC method, is no longer guaranteed. 
This means that additional care must be taken to minimize these effects. Usually, this is done by introducing 
extra buffer regions along the mesh interfaces so that force interpolation on the boundaries is avoided. In 
our code, we do not introduce additional buffer cells on the mesh boundaries because the meshes are already 
expanded by smoothing (see Section 3.2). Therefore, we simply prohibit force interpolation that uses both 
coarse and fine boundary cells, interpolating instead on the coarse level. In this way, particles are driven by 
the coarse force until they move sufficiently far into the finer mesh. The same is true for particles moving 
from the finer to coarser mesh. 

3.6.    Parallelization 

The success of a numerical algorithm largely depends on how easily it can be parallelized to run on large 
multiprocessor computers. The parallelization strategies are problem dependent and are different for shared 
and distributed memory machines. Here we briefly outline the parallelization specifics of the ART code. 

Functionally, the code can be decomposed in two parts - the PM part working on the base grid and 
the part dealing with refinement meshes. The PM algorithm was successfully parallelized for both massively 
parallel distributed memory (such as CM-5 (Ferrell k Bertschinger 1994; Smith 1995) or SP-2 (Gross 1997)) 
and shared memory machines (Yepes et al. 1996). To be ported to distributed memory systems the ART code 
requires more elaborate functional and data organization (Khokhlov 1997) but is relatively straightforward 
to parallelize for shared memory architectures. The most CPU expensive parts of the code - Poisson solver 
and force interpolation - are effectively parallel. In the mesh modification routine the most expensive part 
- the construction of refinement and derefinement maps - is also parallel. Currently, blocks of the code that 
require considerable parallelization efforts but are relatively CPU inexpensive - the density assignment and 
cell splitting/joining during the mesh modifications7 - are run serially. 

The present version of the code was parallelized to run in shared memory mode on the HP-Convex SPP- 
1200 Exemplar - a multi-purpose scalable parallel computer. The timing and benchmarking was performed 
for one of the simulations described in Section 3.8. 

3.7.    Memory requirements 

Memory requirements of the code are determined by the number of dark matter particles Np, number of 
cells in zero level base grid N°, and number of cells on refinement levels N*". In the current implementation 
of the code the total number of memory storage elements N used by the code is: 

NABT w 9Np + QNO + lbNL (13) 

The overhead for Nf is determined by the pointers that are used to support the tree refinement hierarchy 
(see Section 3.2). It can be reduced by a factor of ~ 2 — 3, if some of the pointers will be shared by siblings 

7 Although the cell splitting and joining procedure is serial, it takes a negligible amount of CPU time because we need to do 
it only for a small number of cells on each time step. 
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(the eight cells which have the same parent). The overhead can be reduced even further (making number 
of storage elements per refinement cell only ~ 2.5) by incorporating more elaborate ideas (Khokhlov 1997). 
The estimated memory requirement for an optimized code is: 

NART a; 9iVp + 4ATC° + 4.5WC
L. (14) 

We plan to implement these improvements in the future versions of the code. 

The NART can be compared to the corresponding number of storage elements in a PM code: 

NPM « 6ATp + JV°; (15) 

The apparent overhead of the ART code compared to PM is the price for fully adaptive and flexible mesh 
structure. It should be noted, however, that to increase resolution by a factor of 2 in a PM code the number 
of cells NU must be increased by a factor of 8 which severely limits the maximum possible dynamic range 
(which with largest currently available computers is ~ 1000). In the ART code, the resolution is improved by 
increasing N? which changes very slowly when resolution is increased. For example, to increase resolution 
in the highest density regions by a factor of 2 in the simulations described in Section 5 (see also Table 1), 
the total number of cells was increased only by ~ 3%. Note also that the dynamic range of ~ 4000 was 
achieved with only ~ 5 x 106 cells while a PM code would require ~ 6.4 x 1010 cells to reach the same 
resolution. For comparison, the memory requirements of the publicly available versions (kindly provided by 
J.Barnes and H.M.P.Couchman) of TREE code and AP3M code are NTREE « UNp + 18Nceth, where Nceih 

is the number of tree cells, and NAp!>M « 13ATp +2N° (not including the overhead related to the refinement 
meshes in NAP M). 

3.8.    Timing 

In this section we present timings of the current version of the code and compare the performance with 
other high-resolution iV-body codes. In Fig.5a we show the performance of different blocks of the code 
with respect to the expansion parameter in a ACDM simulation (QA = 1 — ßo = 0.7, h = 0.7, <TS = 1.0) 
of an L = 15/i-1 Mpc box with N = 323 particles and 643 base grid (more details are given in Section 
4.4). The simulation was run on 8 CPUs of the NCSA SP-1200 Exemplar in shared memory mode. The 
CPU overhead for running code in parallel is about 50% and the same simulation run on an IBM RS/6000 
workstation performs ~ 2.5 times faster (in terms of CPU but not in terms of wallclock time!). The overhead 
is mostly due to the unusually large penalty for cache missing events which results if memory is accessed 
randomly. In Table 1 we present timing for different code blocks for the final time step (z = 0) of two 
similar ACDM simulations with 643 particles (see section 5.2) and with different resolutions. The base grid 

Table 1.    Code timings for ACDM simulations with 643 particles on 8 CPUs of the SPP-1200 Exemplar. 

Routine Maximum 
level 

Number 
of mesh cells 

Density 
assignment 

FFT 
solver 

Relaxation 
solver 

Particle 
motion 

Mesh 
modifications 

Total 

CPUl (sec) 
CPU2 (sec) 

4 
6 

4860976 
5019136 

25.8 
30.6 

26.2 
26.4 

54.5 
82.7 

34.8 
40.8 

44.0 
55.7 

227.3 
285.9 



11 

in both simulations was 1283 and numbers of the maximum allowed refinement levels were 4 and 6. As 
before, the simulations were run on 8 CPUs of the SPP-1200 Exemplar. We compare the timings from Table 
1 with the performance of the AP3M code (Couchman 1991). The final step in a two level AP3M simulation 
of an open (ß0 = 0.5, ßA = 0, ft = 0.63, o* = 1.2) cosmology (box L = 150ft-1 Mpc, 1283 grid, 1283 

particles, and smoothing kernel t] = 0.1 cell giving a dynamic range of about 1000) took 1316 CPU seconds 
on one processor of IBM SP-2 computer (S.Borgani 1996, private communication). This number is roughly 
consistent with timings presented in original paper of Couchman (1991) if we account for the difference in 
MFLOPs between used machines. The first simulation in Table 1 is comparable in spatial resolution to 
the above AP3M simulation but we have to account for the different number of particles. Only density 
assignment and particle motion directly scale with number of particles. We, therefore, multiply the CPU 
time spent by these routines by 8 which gives a total time for the final step ~ 650 CPU seconds. Note, 
however, that about half of this CPU time is penalty for the cache missings which would be negligible for 
a serial run on the SP-2. The ART code, therefore, is about 3 times faster than AP3M code of comparable 
resolution. Note also that although in the second simulation from Table 1 the resolution was increased by a 
factor of 4, the CPU time does not change significantly because only a relatively small number of additional 
cells was required to resolve the highest density regions. 

3.9.    Energy conservation 

In an expanding Universe, energy conservation is expressed by the Irvine-Layzer-Dmitriev-Zel'dovich 

equation: 

^KT + ITJl—rf. W> 

or ,a 
«T+U)\l0 = -      Tda. (17) 

Jao 

Where 
1Ä»> 1Ä 

1=1 »=1 

The error in energy conservation at a time a< is then measured by comparing the change in total energy with 

the change in aU: 
a(T+u)ftr>+f!;:;Tda 

Error= ÖÜW*  (19) 

In Fig. 5b we show the energy conservation error versus expansion parameter a for two ACDM simulations 
with 323 and 643 particles. In both simulations the time step, Aa, was chosen so that all the particles would 
move not more than a fraction (~ 0.1 - 0.3) of the mesh cell they are residing in. We note that energy is 
conserved at the level of ~ 2% in the 323 particle simulation and at the level of ~ 1% in the 643 particle 
simulation. The maximum error of ~ 5% and ~ 3% for the two simulations occurred when the first two 
refinement levels were opened at a ~ 0.18. This may be a result of the rather fast change in resolution in 
the regions of ongoing nonlinear collapse. 
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4.    Tests of the code 

In this section we present tests of the developed code. Particularly, we show results describing the 
accuracy of the force calculation in ART scheme and related issues of resolution. We discuss the results of 
the Zel'dovich pancake test and of the spherical infall test. Finally, we compare results for a set of realistic 
cosmological runs obtained with ART and PM code. 

4.1.    Force accuracy 

It is important to know the shape and accuracy of both short- and long-range forces, when the resolution 
of different codes is compared. Here we present a test showing the accuracy of force calculations in PM and 
ART schemes and compare them to the Plummer softened force which is often used in both P3M and TREE 
codes. 

We used a 643 base grid with a massive particle in the center and a second particle placed randomly 
nearby. The refinement meshes were constructed up to the specified level, so that both particles were located 
on this level. The usual potential and force calculations (described above) were then performed to get the 
pairwise force between these two particles which was compared with the "exact" Newton force.8 Fig.6 shows 
the results of the force calculation with the FFT method (i.e., ART without refinements) and with the 
relaxation method at different levels of refinement. We plot relative acceleration errors calculated as follows: 

Error = ^cale} " ^theor[ 

where |acajc | is the acceleration calculated on the mesh and \atheor I is the theoretical acceleration. The upper 
panel in Fig.5 shows the relative force error versus interparticle separation, given in the units of the base 
grid, for a pure PM calculation and for the second and fourth refinement levels. Note that despite the general 
similarity of the shape of FFT and relaxation forces, the scatter of the latter at small separations is larger. 
The relaxation force, however, is about twice "softer" (it reaches a sa 5% error level only at separations ta 2 
grid cells, the FFT force reaches this level at » 1 cell). The scatter at small separations does not, however, 
mean that we have the same errors in particle orbits. In the case of a circular orbit with a radius of 3 cells, 
for example, the error in radius is less than 1% for at least a few orbital periods in both methods. 

The lower panel in Fig.6 shows the relative error for ART force calculated on the fourth level versus 
distance in the units of the fourth level mesh cell together with the relative error corresponding to the 
Plummer softened force (solid line) with the softening parameter e (<j> oc 1/vV2 + e2) equal to the size of the 
fourth level cell. Comparison shows that while ART force fluctuates around zero for distances greater than 
two mesh cells, the Plummer softened force is considerably lower than 1/r2 law for up to six grid cells. The 
relation between resolution of the ART code, HART, and Plummer softening length is thus e « ZHART- Gelb 
(1992) studied the shape of the Plummer softened force in his P3M code. The result is consistent with ours 
(Fig. 2.4 in Gelb 1992) - the force starts to fall down at a distance about five times larger than the softening 
length. 

8 We should note that particles in the CIC scheme (see Section 2) have cubic rather than spherical shape so that the exact 
force at small separations is not an inverse square function of distance. 
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4.2.    ZeI'dovich' pancake collapse 

The one-dimensional plane wave collapse in an expanding universe is one of the traditional tests of 
iV-body codes (Klypin k Shandarin 1983; Efstathiou et al. 1985). In this test, the analytical solution 
(ZeI'dovich 1970) is used to check how accurately the code integrates particle trajectories. If we know the 
initial conditions, the solution predicts particle positions for any other moment of time: 

xf=qi+(4)cos(2,rk"q)' 
here q< are the initial (unperturbed) positions, k is the wavevector, and A(t) is the amplitude. In an Q = 1 
universe, A = a(t)/ao where ao is scale factor at the crossing time. The corresponding velocities can be 
obtained by differentiating the above formula for positions. 

We used a 323 base grid with 643 particles. The particle positions and velocities were initially perturbed 
using the ZeI'dovich approximation. The particle trajectories were integrated by the ART code with three 
levels of refinement (the density threshold for opening the next level was twenty particles in a cell on the base 
grid and three particles in a cell for any refinement level). In Fig.7 we show one-dimensional phase diagrams 
at the crossing time where results of the ART code are compared with results of PM code (323 grid). The 
figure shows that the ART code follows the analytical solution more accurately than the PM code. This is 
shown quantitatively in Fig.8, where we plot rms deviations of the particle positions and velocities from the 

exact solution as a function of time (Efstathiou et al. 1985): Axrms = |£) (a;,- - xf)  / J2 (xf ~ 9»)  I      . 

Avrm, = fe(t>$-t>f)2/£(wf)2)| • Starting from the moment when the first refinement level was 

created (o « 0.29) the rms deviations were systematically lower in the ART code than in the PM code. 

4.3.    Spherical infall test 

An analytical solution describing spherical infall of material onto an overdensity in an expanding cos- 
mological framework was developed by Fillmore & Goldreich (1984) and Bertschinger (1985). As noted by 
Splinter (1996), the problem possesses a symmetry different from intrinsic planar symmetry of the mesh 
codes. This makes it a useful and strong test. The analytical solution describes the evolution of a spherical 
uniform overdensity 6p/p = 5,- -C 1 in a region which has proper radius Ri at some initial time ti in a fiat 
Einstein-de Sitter universe. As the density contrast grows, the matter initially inside Ri is increasingly decel- 
erated. Eventually it stops expanding and turns around to collapse. If the initial Hubble flow is unperturbed 
(all peculiar velocities are initially equal to zero), the initial turnaround occurs at the time Uta- 

t.   - 5l/r3/2f- Uta — ^T°i        l>- 

At this moment the initial overdensity reaches its maximum radius: 

Tita = Ri^r   • 

Later on, shells of successively larger and larger radii turn around. At a given time t > Uta, the shell of a 

tadiUS / t \8'9 

rta(t) = r„. [—J 
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starts to collapse (Bertschinger 1985). 

The solution for the density profile of the overdensity is self-similar in terms of the dimensionless variable 
A = r/ria(t) and for A < 1 can be expressed as (Fillmore & Goldreich 1984; Bertschinger 1985): 

£>(A) « 2.79A-9/4, 

while at larger A the main feature of the solution is the presence of sharp caustics. 

We modelled the spherical infall problem described above by distributing 323 particles uniformly on 
the 323 grid (in the centers of the grid cells) and placing additional particles in a sphere of 2 grid cell 
radius in the center of the computational volume. The number of additional particles determines the initial 
overdensity that we have chosen to be 6,- = 0.2. We integrated particle trajectories from a,- = t2JZ = 0.1 up 
to a = 10.1 making 10000 steps to insure that the Courant condition (i.e., particle moves only a fraction of 
a mesh cell in a single time step) is not violated on any of the five refinement levels - the condition required 
for the integration to be stable. The refinement levels were introduced in the regions where density was 
equivalent to more than six particles in a cell and the number of levels was limited to five making thus the 
effective resolution in the highest density regions equivalent to 1024. In Fig.9 the calculated density profile is 
compared with the analytical solution (from Tables 4 and 5 in Bertschinger 1985). We see a good agreement 
between the calculated density profile and the analytical solution at all radii down to the resolution limit. 

4.4.    Realistic cosmological runs: comparison with PM code 

To test the performance of the code in realistic cosmological simulations we made a set of runs using 
ART and PM codes with the same initial conditions and different spatial resolutions and compared the 
resulting particle distributions. In the first four of runs we simulated an L = 20ft"1 Mpc box with N = 323 

particles assuming a flat ACDM cosmological model (Q,\ = 0.7, h = 0.7, (Tg = 1.0). In ART runs we allowed 
for two levels of refinement starting from 643 and 1283 grids - we will call these runs ART 643 + 2L and ART 
1283 + 2L. The number of time steps was ~ 1000 in the ART 643 + 2L and ~ 2000 in the ART 1283 + 2L 
run. The refinement levels were introduced wherever the density exceeded a threshold value equivalent to 
more than 5 particles per cell. The PM code was run with 643 (PM 643) and 2563 (PM 2563) grids. In 
Fig. 10 we show the projected particle distribution at z = 0 from these four runs. The global distribution 
of particles and halos is well reproduced by the ART code. Also, halos in the ART 643 + 2L simulation 
are much more compact than in the PM 643 simulation. This is shown quantitatively in Fig.ll, where we 
compare density distribution functions (the fraction of the total mass in the regions of a given overdensity) 
in these simulations. The density, distributions for all runs were computed after rebinning the density field to 
the 2563 grid. The resolution of a simulation puts limits on the maximum density in the halo cores because 
gravitational collapse virtually stops at scales of ~ 1 grid cell (e.g., Klypin 1996). Therefore, the density 
in the halo cores (the high-density tail of the distribution) is a good indicator of the spatial resolution. We 
note that the density distribution functions for both ART 643 + 2L and PM 2563 runs show approximately 
the same behavior reaching overdensities of « 2 x 104, while the PM 643 run fails to produce halos with 
overdensities greater than « 5 x 103. We, therefore, conclude that the ART code produces density fields 
similar to those of the PM code of comparable resolution. 

The first application of the code was study of the structure of dark matter halos. Therefore, as a final 
test we compared the halo density profiles in the ART and PM simulations. The size of the simulation 
box, L = 15ft-1 Mpc, was chosen to be the same as in the larger simulations described in the next section. 
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The rest of the parameters were the same as in the above simulations. We simulated the evolution of the 
323 particles using the PM code with 2563 mesh and the ART code with a 643 base grid and three levels 
of refinement. As before, we refined regions where the local density exceeded a threshold value of about 
5 particles per cell. A halo finding algorithm (described in the next section) was applied to the resulting 
particle distribution. In Fig.12 we present the density profiles for six halos of different masses. The mass 
resolution in these simulations (1.2 x 1010MQ) determined the mass range of halos. The most massive halo 
in Fig. 11 consists of about 5000 particles while the least massive contains only about 100 particles. The 
density profiles of PM and ART halos agree reasonably well down to the resolution limit (~ 60A"1 kpc). 

5.    An application: structure of dark matter halos in CDM and ACDM models 

5.1.    Motivation 

We used the code to study the structure of dark matter halos in two of the currently popular cosmological 
models - Standard Cold Dark Matter (SCDM) and Cold Dark Matter with cosmological constant (ACDM). 
The dark matter halos play a crucial role in the formation and dynamics of galaxies and galaxy clusters. 
Therefore, theoretical predictions about the structural and dynamic properties of the halos can be compared 
with observations and used as a powerful test of a given theoretical model. The numerical study of the halo 
structure requires very high spatial dynamic range (at least ~ 104) because the simulation box has to be 
large enough to account correctly for large perturbation waves and the force resolution has to be high enough 
to make predictions in the observational range (< 5 kpc). The ART code was designed to handle such high 
dynamic ranges. 

The properties of dark matter halos were intensively investigated recently for a variety of cosmological 
models. Early numerical studies (Frenk et al. 1985; Quinn, Salmon, k Zurek 1986; Efstathiou et al. 
1988; Frenk et al. 1988) indicated that the density profiles of dark matter halos in hierarchical clustering 
models in a flat, £2 = 1, universe were approximately isothermal (p(r) a r~2) in agreement with analytical 
results (Fillmore & Goldreich 1984; Bertschinger 1985). The dependence of the halo density profiles on the 
initial perturbation spectrum and on specific parameters of the cosmological model were also studied both 
analytically (Hoffman & Shaham 1985; Hoffman 1988) and numerically (e.g., Crone, Evrard, & Richstone 
1994). These early numerical studies, however, lacked the necessary mass and spatial resolution to make 
reliable predictions on the structure of the halo cores. To overcome the resolution limits, substantial efforts 
were made to simulate the formation of halos from isolated density perturbations (e.g. Dubinski & Carlberg 
1991; Katz 1991) or to resimulate with a higher resolution halos identified in large low-resolution runs 
(Navarro, Frenk, & White 1996; Tormen, Bouchet, & White 1996). These simulations have the advantage of 
simulating halos in a wide mass range with homogeneous spatial and mass resolutions. However, the tidal 
effects from the neighboring galaxies and effects of halo mergers are simulated rather roughly. It is therefore 
important to check the results of such simulations with the results of direct simulation of halo formation in 
a representative box. Studies of the structure and dynamics of halos extracted from high-resolution direct 
simulations were done by Warren et al. (1992) and Cole & Lacey (1996). Warren et al. (1992) used TREE 
code to simulate the evolution of 1283 particles in an £2 = 1 universe with scale-free initial conditions. The 
force resolution was determined by imposing a Plummer softening of e = 5 kpc. A special emphasis was made 
on the investigation of halo shapes. Similar initial conditions were used in the study by Cole & Lacey (1996), 
who used a P3M code to evolve 1283 particles. The resolution in the latter simulations was L/e = 3840, 
where L is the size of the computational volume and e is the Plummer softening parameter.  The results 
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indicated that the density profiles of all simulated halos are well fit by the analytical model of Navarro, 
Frenk, & White (1996) (hereafter NFW). This model has p oc r"1 at small radii and steepens smoothly to 
p oc r~3 at a scale radius rs: 

P(r) a "771—T"Ä2 • (20) r(l + r/rs)
2 K    ' 

The density profile described by this expression is singular, because density rises arbitrarily high when r —► 0 
forming a cusp. The cuspy structure of the central parts of a halo represents thus a generic prediction of the 
model. Although the NFW profile is consistent with current X-ray and gravitational lensing observations 
of galaxy clusters (NFW), the p oc r_1 behavior is in contradiction with observations of dynamics of dwarf 
spiral galaxies that imply flat central density profiles (Flores & Primack 1994; Moore 1994; Burkert 1996). 
These observations can serve as one of the critical tests of any model that includes a dark matter component 
because it is generally believed that the dynamics of the dwarf spiral galaxies is dominated by dark matter 
on scales r > 1 kpc. The fact that the NFW profile holds for a variety of cosmological models (NFW; Cole 
& Lacey 1996) indicates its possible universality for CDM-like models. The goal of the present study was 
to investigate the structure of dark matter halos formed in a ACDM model. This model is currently one 
of the most successful scenarios of structure formation in the Universe. It is, therefore, important to check 
whether the central cusp is present in halos formed in this model. 

5.2.    Simulations 

To study the structure of dark matter halos we simulated the evolution of 643 particles in standard CDM 
(Q = 1, h = 0.5, <r8 = 0.63) and ACDM (fi = 0.3, fiA = 0.7, <x8 = 1.0) models. We made three runs - one 
high-resolution (resolution ~ 2/i-1 kpc) run for each models, and a lower resolution run (resolution ~ 8h"1 

kpc) for the ACDM model to study the effects of resolution. In terms of the Plummer softening length (see 
Section 4.1), our resolution corresponds to L/e « 12000 for the high resolution runs, and L/e fa 3000 for 
the low resolution run. The simulations were started at z = 30 and particles trajectories were integrated by 
making 3872 time steps in the low resolution run, and 7743 time steps in high-resolution runs. The size of 
the simulation box, L = 15/T1 Mpc, determines the mass resolution (particle mass) - 1.523 X 109A_1MQ 

for SCDM and 5.077 x 10? h^M^ for ACDM. 

5.3.    Halo finding algorithm 

To identify halos in our simulations we use an algorithm similar to that described in Klypin, Primack, & 
Holtzman (1996). The algorithm identifies halos as local maximaof mass inside a given radius. The efficiency 
of the algorithm was improved by incorporating the idea of Warren et al. (1992) of finding approximate 
locations of density peaks using particle accelerations. This idea is based on the principle that particles with 
the largest accelerations should reside near the halo centers which is true for halos with roughly isothermal 
density profiles. In practice, this way of finding density maxima has proved to be quite efficient. The halo 
identification algorithm can be described as follows. 

1. The particles are sorted according to the magnitude of their scalar accelerations. 

2. The particle with the largest acceleration determines the approximate location of the first halo center. 
Particles located inside a sphere of radius r,„jj centered at the halo center are assigned to the same halo and 
are excluded from the list of particles used to identify halos. The radius rinit is an adjustable parameter; 
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we use a radius approximately twice larger than the force resolution of a simulation. The procedure repeats 
for the particle with the largest acceleration in the list of remaining particles. The peaks are identified until 
there are no particles in the list. 

3. When all the density peaks are identified, we proceed to find more accurate positions of the halo 
centers. This is done iteratively by finding the center of mass of all particles inside rj„,t and displacing the 
center of the sphere to the center of mass. The procedure is iterated until convergence. 

4. When the halo centers are found, we increase rj„,t until the overdensity inside the corresponding 
sphere reaches a certain limit. The limit is based on the top-hat model of gravitational collapse that predicts 
the typical overdensity for virialized objects ~ 200 in CDM and ~ 334 for our ACDM model (e.g. Lahav 
et al. 1991; Kitayama k Suto 1996). However, we denote halo radius and mass inside this radius defined 
as M200 and r2oo regardless of the actual value of the limit. Smaller halos located within a radius r2oo of a 
bigger halo are deleted from the list. 

As an output we get a list of halo positions, velocities, and parameters (such as r2oo and M200). 

5.4.    Results: halo density profiles 

We applied the halo finding algorithm described above to identify halos in the simulations at zero 
redshift. Only halos with more than 100 particles within r2oo were taken from the full list. We also 
present results for relatively isolated halos, excluding all halos which have close (r < 2r2oo) neighbors of 
mass more than half of the halo mass. The density profiles were constructed by estimating the density in 
concentric spherical shells of logarithmically increasing thickness with the smallest radius corresponding to 
the maximum resolution. The resulting profiles were fit (the fit parameter was the scale radius r») with 
the analytical formula of NFW (eq. 20). In Fig.13 and 14 we show density profiles of 9 halos of different 
mass identified in the high-resolution CDM and ACDM simulations along with the analytical fits. The NFW 
profile appears to be a good approximation for halos of all masses (within the mass range of our simulations) 
in both CDM and ACDM models. 

NFW argued that the concentration parameter, c = r2oo/»** (see eq.20), of a dark matter halo depends 
on the halo mass. They have found that low mass halos are more centrally concentrated than high mass 
ones which possibly reflects different formation redshifts of halos. Fig.15 shows the concentration c as a 
function of halo mass (M200) for halos identified in our simulations. The solid curve represents a theoretical 
prediction (see NFW for discussion) assuming a definition for the formation time of a halo as the first time 
when half of its final mass M200 was in progenitors with individual masses exceeding fraction / = 0.01 of 
M200- This particular value of / seemed to provide the best approximation to the numerical results of NFW 
for the CDM model. The results of both the CDM and the ACDM simulations agree reasonably well with 
this curve. The larger spread of parameter c for low mass halos is due largely to the statistical noise. The 
lowest mass halos (M200 ~ 1011 5 MQ) contain a few hundred particles within their r2oo and thus have more 
noisy density profiles (typical 2<r error in logc ~ 0.2 — 0.3) compared to more massive halos (M200 > 1013 

M©) which have tens of thousands of particles (error in logc ~ 0.05). 
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5.5.    Effects of resolution 

It is important to model reliably the structure of the very central parts (r < 10/r1 kpc) of a halo 
because that is where we can compare model predictions with observational results. Unfortunately, that is 
also where force resolution may strongly affect the shape of the density profiles. To study possible effects of 
resolution, we have compared density profiles of the same halos taken from ACDM simulations of different 
resolution described in Section 5.2. In Fig. 16 we compare density profiles of 4 halos from these simulations. 
As before, the density profile is drawn only to the resolution limit of simulation. We conclude that, up to 
the resolution limit, the lower resolution density profile follows that of the higher resolution simulation. 

5.6.    Conclusions 

We studied the structure of dark matter halos in CDM and ACDM models with a resolution of ~ 2A"1 

kpc in a box of 15/i-1 Mpc. 

1. We found that for r < r200, the density profiles of all halos in both CDM and ACDM simulations are 
well fit by the analytical formula (eq. 20) of Navarro et al. (1996). 

2. The mass dependence of the halo concentration parameter c in our simulations is consistent with the 
results of Navarro et al. (1996). 

3. The fact that our results for the CDM model agree with the results of Navarro et al. (1996) serves 
both as a final test of the presented code and as an independent check of their method with results from 
direct cosmological simulations. 

6.    Discussion and conclusions 

We present a new high-resolution iV-body code which incorporates the idea of Adaptive Refinement 
Tree (Khokhlov 1997) to build a hierarchy of refinement meshes in regions where higher resolution is desired. 
Unlike other iV-body codes that make use of refinement meshes, our code is able to construct meshes of 
arbitrary shape covering equally well both elongated structures (such as filaments and walls) and roughly 
spherical dark matter halos. The meshes are modified to adjust to the evolving particle distribution instead 
of being rebuilt at every time step. We use a cubic grid as the zeroth level of the mesh hierarchy. The size 
of this grid determines the minimum possible resolution of a simulation (i.e., resolution in regions where 
there are no refinements). The code blocks working on the zero level grid are similar to those of a PM code. 
To solve the Poisson equation on refinement meshes we have developed a new solver that uses a multilevel 
relaxation method with Successive Overrelaxation (Hockney & Eastwood 1981; Press et al. 1992). The 
solver is fully parallel and is only ~ 2 times slower than an FFT solver for the same number of mesh cells. In 
real simulations with the same resolution, the relaxation solver outperforms the FFT because the resolution 
is achieved with much smaller number of cells (see Section 3.7) The presented tests (Section 4) show that our 
code adequately computes gravitational forces down to scales of ~ 1.5 - 2 mesh cells. The memory overhead 
in the current version of the code is rather large compared to other high-resolution codes. The number of 
required mesh cells, however, changes very slowly with increasing resolution. At present, the code is capable 
of handling a dynamic range as high as ~ 10000. Also, tests of the code performance show that it is about 
three times faster than an AP3M code (and thus TREE code, see Couchman 1991) of comparable resolution. 
Still, the Courant condition requiring that particles move only a certain fraction of a mesh cell at every time 
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step makes the code CPU rather than memory limited. 

The present version of the code is by no means optimal and we plan the following improvements. 

1. The memory requirement of the code can be significantly reduced if pointers that are used to support 
the tree refinement structure are shared by siblings (descendants of the same parent cell). The memory 
overhead can be reduced even further by incorporating more elaborate algorithms of data storage (Khokhlov 

1997). 

2. The current version of the code (as well as any other high-resolution code) is constrained by the 
Courant condition. To insure that this condition is satisfied on the maximum refinement level requires small 
time steps redundant for particles moving on coarser meshes. We plan to incorporate an integration scheme 

with multiple time steps. 

3. We plan to integrate the present TV-body code with a high-resolution Eulerian hydrodynamics code 
(Khokhlov 1997) which works on similar refinement meshes. 

We have used the ART code to study the structure of dark matter halos in two cosmological models - 
standard CDM (Ü = 1, h - 0.5, <r8 = 0.63) and a variant of ACDM (fi = 0.3, fiA = 0.7, <r8 = 1.0). We have 
found that halos formed in ACDM model have density profiles similar to halos formed in CDM model. The 
density profiles are well described by the analytical formula (eq. 20) presented by Navarro et al. (1996) and 
have cuspy (p(r) oc r_1) structure in the central (r < 10A-1 kpc) parts of a halo with no indications of a 
core down to the resolution limit of our simulations. We therefore conclude that halos formed in the ACDM 
model have structure similar to the CDM halos, and thus cannot explain dynamics of the central parts of 
dwarf spiral galaxies inferred from their rotation curves. 
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on various data structures and algorithms. We would like also to thank Gustavo Yepes, Michael Norman, 
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by the grant AST9319970 from the National Science Foundation and by the Office of Naval Research. The 
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Parent 1 Parent 2 

T 

Child 1 
\ 

Child 2 

Parent 1 Parent 2 

Child 1 Child 2 

fig. 1 

Fig. 1.— Schematic illustration of the tree structure and pointers used to support it in one dimension. 
Scheme (a) shows two neighbor cells (Parent and Neighbor) one of which (Parent) is split (it has two 
children denoted as Child 1 and Child 2) and the other (Neighbor) is a leaf. The arrows denote pointers used 
to support the structure (see text for details). Arrows drawn with broken lines denote pointers which can 
be shared by all children. Below (b) we show the actual locations of the mesh cells in space. 
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fig. 2 

\ 

>s \ 

Illegal 

Fig. 2.— Examples of permitted and prohibited neighbor configurations. The prohibited configurations (the 
cells which violate the neighbor rule) are indicated with arrows. Note that it is not allowed to have neighbors 
with level difference greater than 1 but it is allowed to have a "corner neighbor" with level difference 2. 
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Fig. 3.— (a) A slice through the refinement structure (base grid is not shown) in one of the ACDM simulations 
with 323 particles (see section 4.4) and (b) corresponding slice through the particle distribution. The square 
in (a) shows the area which is enlarged in Fig.4 
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Fig. 4.— Fragment of the slice from Fig. 3a denoted by the square. Note that the mesh generator tends 
to build almost rectangular meshes around dense isolated clumps of particles while to trace a filament 
the generator creates meshes of arbitrary shape that effectively cover the elongated structures in particle 
distribution. 
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Fig. 5.— a) Timing for ACDM run with 323 particles on 8 processors of SPP-1200 Exemplar (see section 
3.8 for discussion). The total CPU time per step was scaled down by a factor of 2 for convenience, b) 
Energy conservation error versus expansion factor a in ACDM runs with 323 (solid line) and 643 (broken 
line) particles. 



27 

0.5 - 
5 

£       0 
l 
V a 

-0.5 

-1 

-i 1—i—i—i  i i 

Level 4 

0^$$ 
Level 2    : . Level 0 (PM)- 

ll*^^^'ä^Ja*,,,aM 

?■ 
s 

y 
■■-••■'  -       !■■     L.   1. 1. 

0.01 0.1 
_i   

10 

a 

as 
I 
I a 

1 
r (grid units) 

i i     i      1     i     i     i     1     i      i     i     I     i     i     i     i     ■     i     i - 
- 
- 

0.5 
ART 

— 

0 

-0.5 

- 

t 

"'* ?   y»vv. V-.'J'^.V-V^.S :Yrv*^%v*^ ?vVr.*-S:*-*^ »**a 

ts    Plummer Softening 
- 

1 
-     >» 
_^<a— 'III' 1 1 1 1 1 1 1 1 1 1 1 L 

- 

4 6 
r (grid units) 

10 

Fig. 6.— a) Pairwise force accuracy of the ART code on the base regular grid (FFT solver) and on the 
second and fourth refinement levels (relaxation solver) versus interparticle separation, b) Comparison of 
the force accuracy on the fourth refinement level with the theoretical accuracy of a Plummer softened force 
versus interparticle separation in units of the fourth level cells. 



28 

4 

T- 1     1     1     1 

a 
i     ■     i     i     |     1     l     1     1     |'  T 

323 PM     - 
+ 

^          3 level ART - 

2 \                            - 

>    0 

-2 

- 

<»                        — 

-4 
.1 ..1 , . 1 L  1 i   i   i   1   i   i   >   i   l   i 

10     20 
q 

30 

i iii . |„ ,—r-,—p |   i   i   i   i   |   i_ 

4 — b 323 PM   - 

2 - 

>    0 - 

-2 
~ 

\              / - 

-4 
i.. .1,1   i 1   I   I   I   I J 1 1 1 L 1,   1 

10     20     30 
q 

►  0 

i—i—i—i—i—I—i—i—i—i—r 

323 PM  - 
+ 

3 level ART 

i—i—i i I i i i i L 
10     20 

x 
30 
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and in PM simulation with 323 grid (b) at the crossing time. Solid line represents the analytical solution 
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triangles show particles located on the base grid, squares show particles located on the first refinement 
level, and so on. The corresponding phase diagram for physical coordinates x are shown in panels c and d. 
The lagrangian coordinates show the differences between ART and PM results more clearly, because at the 
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deviations in ART code are lower than in PM code 



30 

107 

106 =- 

105 

104   r- 

& 1000 
Q 

100   r- 

10 

1 - 

0.1 

;     V.             1             1         II- \~I—TT 1 1         1 1    1   1   1  1 1 1  ■■— 1           1 1—I—I 

H
il
l 

   
   

   
   
I
I

   
  

1 
   

   
   

  '
   

   
1  

  1
   

1 
H

U
 

- 
- 

- 

\ 
- 

— t^i — 
: 

\j : 

- I — 

: k^ : 

1  
 1 

1 
11

 

I         I -1 1   1   1 t 1 1 I         1 1    1   1 1. 11 

0.001 0.01 0.1 

Fig. 9.— Spherical infall test: simulated density profile (filled circles) is compared with the analytical 
solution (solid line). The points for the analytical solution are taken from Tables 4 and 5 in Bertschinger 
(1985). The simulated density profile was constructed by estimating the density in concentric spherical shells 
of logarithmically increasing thickness with the smallest radius corresponding to the maximum resolution. 
The error bars correspond to the poisson noise. 



31 

PM 643 ART 643+2L 

r ■■!'■.•••.• •• -■ aP!.'~■i<^i:>'-..•■,J'4■^*5»--» •••■.-. .-•.; 

100 

250 

200 

150 

100 

50 

u i',:i».-.V:-:rA'i-.f'-i.:.*i afem-tvi 'fVhi-Jgjs'rfl.Vi M -V V % 

50 100 
ART 1283+2L 

50 100      150 
PM 2563 

200     250 

Fig.  10.— Comparison of projected final distributions of 323 particles in pure PM runs with 643 (a) and 
2563 (d) grids and in ART runs with two levels of refinement and base grid of 643 (b) and 1283 (c). 
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Fig. 11.— Comparison of density distribution functions (the fraction of the total mass in the regions of a 
given overdensity) for PM and ART (two refinement levels) runs. The density distributions for all runs were 
computed after rebinning the density field to the 2563 grid. Note that the density distribution functions 
for both ART 643 + 2L and PM 2563 runs show approximately the same behavior reaching overdensities of 
«2x 104, whereas the PM 643 run fails to produce halos with overdensities greater than «5x 103. 
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simulations (323 particles) of comparable resolution (~ 60A-1 kpc) started from the same initial conditions. 
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Fig. 13.— Density profiles (solid lines) for 9 halos of different masses taken from CDM simulation with 643 

particles (resolution ~ 2A-1 kpc) and the best fit of the analytical profile (dotted lines) of Navarro et al. 
(1996). The numbers indicate mass of a halo inside a radius corresponding to overdensity 200. 
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Fig.  14.— The same as Fig. 13 for 9 halos of extracted from ACDM simulation (643 particles, resolution 
~ 2ft-1 kpc). The numbers correspond to a halo mass inside a radius of overdensity 334 (see Section 5.4). 
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Fig. 15.— Logarithm of the concentration parameter, c = r2oo/'-,, versus logarithm of halo mass M2oo for 
high-resolution (~ 2ft-1 kpc) CDM (filled circles) and ACDM simulations (empty circles). The solid curve 
shows the mass-concentration relation predicted from the formation times of halos which best described the 
numerical results of Navarro et al. (1996). 
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Fig. 16.— Effects of resolution on halo density profiles. The profiles of 4 halos taken from a ACDM run with 
~ 2A-1 kpc resolution (solid lines) and a run with ~ 7A_1 kpc resolution (broken lines) are plotted down to 
the resolution limit. 


